The synthesis of minus-strand RNA of bamboo mosaic potexvirus initiates from multiple sites within the poly(A) tail.
نویسندگان
چکیده
The 3' terminus of the bamboo mosaic potexvirus (BaMV) contains a poly(A) tail, the 5' portion of which participates in the formation of an RNA pseudoknot required for BaMV RNA replication. Recombinant RNA-dependent RNA polymerase (RdRp) of BaMV binds to the pseudoknot poly(A) tail in gel mobility shift assays (C.-Y. Huang, Y.-L. Huang, M. Meng, Y.-H. Hsu, and C.-H. Tsai, J. Virol. 75:2818-2824, 2001). Approximately 20 nucleotides of the poly(A) tail adjacent to the 3' untranslated region (UTR) are protected from diethylpyrocarbonate modification, suggesting that this region may be used to initiate minus-strand RNA synthesis. The 5' terminus of the minus-strand RNA synthesized by the RdRp in vitro was examined using 5' rapid amplification of cDNA ends (RACE) and DNA sequencing. Minus-strand RNA synthesis was found to initiate from several positions within the poly(A) tail, with the highest frequency of initiation being from the 7th to the 10th adenylates counted from the 5'-most adenylate of the poly(A) tail. Sequence analyses of BaMV progeny RNAs recovered from Nicotiana benthamiana protoplasts which were inoculated with mutants containing a mutation at the 1st, 4th, 7th, or 16th position of the poly(A) tail suggested the existence of variable initiation sites, similar to those found in 5' RACE experiments. We deduce that the initiation site for minus-strand RNA synthesis is not fixed at one position but resides opposite one of the 15 adenylates of the poly(A) tail immediately downstream of the 3' UTR of BaMV genomic RNA.
منابع مشابه
The Functional Roles of the Cis-acting Elements in Bamboo mosaic virus RNA Genome
Bamboo mosaic virus (BaMV), which belongs to the genus Potexvirus in the family Alphaflexiviridae, has a single-stranded positive-sense RNA genome that is approximately 6400 nucleotides (nts) in length. Positive-sense RNA viruses can use genomic RNA as a template for translation and replication after entering a suitable host cell. Furthermore, such viral RNA is recognized by capsid protein for ...
متن کاملThe AAUAAA motif of bamboo mosaic virus RNA is involved in minus-strand RNA synthesis and plus-strand RNA polyadenylation.
Bamboo mosaic virus (BaMV) has a single-stranded positive-sense RNA genome with a 5'-cap structure and a 3' poly(A) tail. Deleting the internal loop that contains the putative polyadenylation signal (AAUAAA) in the 3' untranslated region (UTR) of BaMV genomic RNA appeared to diminish coat protein accumulation to 2% (C. P. Cheng and C. H. Tsai, J. Mol. Biol. 288:555-565, 1999). To investigate th...
متن کاملChloroplast phosphoglycerate kinase, a gluconeogenetic enzyme, is required for efficient accumulation of Bamboo mosaic virus
The tertiary structure in the 3'-untranslated region (3'-UTR) of Bamboo mosaic virus (BaMV) RNA is known to be involved in minus-strand RNA synthesis. Proteins found in the RNA-dependent RNA polymerase (RdRp) fraction of BaMV-infected leaves interact with the radio labeled 3'-UTR probe in electrophoretic mobility shift assays (EMSA). Results derived from the ultraviolet (UV) cross-linking compe...
متن کاملSufficient length of a poly(A) tail for the formation of a potential pseudoknot is required for efficient replication of bamboo mosaic potexvirus RNA.
RNAs transcribed from a full-length infectious cDNA clone of the bamboo mosaic potexvirus (strain O) genome, pBaMV-O, were infectious to Nicotiana benthamiana plants. Mutant genomes in which the poly(A) tail is absent or replaced by a 3' tRNA-like structure from turnip yellow mosaic virus RNA failed to amplify detectably in N. benthamiana protoplasts. No amplification was detected in protoplast...
متن کاملBamboo mosaic potexvirus satellite RNA (satBaMV RNA)-encoded P20 protein preferentially binds to satBaMV RNA.
A satellite RNA of 836 nucleotides [excluding the poly(A) tail] depends on the bamboo mosaic potexvirus (BaMV) for its replication and encapsidation. The BaMV satellite RNA (satBaMV) contains a single open reading frame encoding a 20-kDa nonstructural protein (P20). The P20 protein with eight histidine residues at the C terminus was overexpressed in Escherichia coli. Experiments of gel retardat...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Journal of virology
دوره 76 12 شماره
صفحات -
تاریخ انتشار 2002